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Abstract

MRI examinations may be used to monitor the progress
of neurological disease. Arising structural changes can
then be quantified using non-rigid registration procedures.
However, the interpretation of the resulting large scale vec-
tor fields is difficult without further processing. We propose
using contraction mapping to detect critical points such as
attractors and repellors in order to characterize deforming
areas. With the application to time series images we show,
that critical points help to get a better perception of the
brain deformation and the underlying pathological process.

1 Introduction

The progress of neurological diseases, (e.g. neoplasm
growth, scarification, and atrophies) may be monitored by a
time series of MRI-examinations. MR images are obtained
as 3D matrices of intensity values. Though visual compar-
ison of the image data is still the gold standard in clinical
neuro-science, with the development of modern image pro-
cessing tools, automated image analysis gains ground. An
automated analysis of time series image data is usually pre-
ceded by rigid registration [13], to align brains with respect
to position and orientation. Then, the application of non-
rigid registration [2] yields a large scale vector field map-
ping one image onto another, and thereby, reflecting struc-
tural changes. Methods have been presented, to segment ar-
eas of changing brain volume by using the Jacobian [3,11],
or to detect growth pattern by using tensor maps [14].

We propose the usage ofcritical points, as they where in-
troduced by Abraham et al. [1], to improve perception of the
vector field and consequently, to improve the understanding
of the monitored disease process. Classifying these points
by their so calledphase portraitswill help to localize inter-
esting spots, such as, growth centers and centers of matter
loss, and it will help to interpret the observed pathological
process.

However, the detection and visualization of critical
points is still an active research area where rather sophis-
ticated mathematical methods have been employed [5]. Es-
tablished are topological methods that decompose vector
fields in different global regions of interest based on local
linear [6] or higher-order [12] approximations of the Jaco-
bian. Philippou et al. [8] introduced a geometrical method
where critical points are found at the intersection of lines
tangent with the vector orientation (or at the intersection of
planes orthogonal to the vectors). Methods based on the
Poincaré-Hopf index theorem e.g., [4] are also widely em-
ployed.

Due to the finite spatial resolution of the images, the dis-
placement field is given on a discrete grid. Since, for ex-
ample, growth or atrophying processes take place in finite
sub-compartments of the brain, representing critical points
by point sources is an over-simplification. Most conven-
tional methods therefore fail to detect critical points when
applied to medical vector fields. Thus, in our application
critical points are not regarded as infinitesimally small.

We rather propose a novel method to detect critical
points that is based on the contraction mapping theorem [7].
For an application to a patient suffering from Alzheimer
Disease we will illustrate how critical points analysis may
help to understand the disease process.

2 The Concept of Critical Points

Consider a vector field~u : Ω → R3 for some compact
domainΩ ⊆ R3 and the set:

Uε(~x′) := {~x| ‖ ~x− ~x′ ‖< ε, ~x ∈ Ω}, (1)

for anyε > 0, ε ∈ R and a~x′ ∈ Ω; the setUε is called the
ε-environmentof ~x′.

The Taylor series expansion of~u(~x) about the point~x′

yields:

~u(~x) =
∂ui

∂xj

∣∣∣∣
~x′

(~x− ~x′) + ~u(~x′) + o(~x).
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By taking into account only its linear terms, and with the

substitutionA := ∂ui

∂xj

∣∣∣
~x′

,A ∈ R3×3 we obtain

~u(~x) = A(~x− ~x′) + ~u(~x′). (2)

Thus, we can now define cf. [8]:
A critical point ~xcp is an equilibrium point in the vector

field topology where~u(~xcp) = 0 while there exists anε >
0, ε ∈ R so, that~u(~x) 6= 0∀~x ∈ Uε(~xcp)\{~xcp}. Within the
vicinity of a critical point~xcp, the vector field~u(~x) – as it is
outlined in (2) – can be approximated by

~u(~x) = A(~x− ~xcp),

where the matrixA is called thephase portraitof the crit-
ical point~xcp. As a first-order Taylor series would have a
limited scope in modeling~u(~x) adequately, i.e., the influ-
ence of critical point~xcp would decay with distance∆~x =
~x−~xcp, accuracy in modeling can be increased by introduc-
ing the attenuation factor1/ ‖ ~x − ~xcp ‖2. Consequently,
the approximation of~u(~x) now reads

~u(~x) =
1

‖ ~x− ~xcp ‖2
A(~x− ~xcp). (3)

A critical point may be classified with respect to the
eigenvalues ofA (as proposed by Abraham et al. [1]): we
distinguish attractors, repellors, saddle points, and rotation
centers (see Fig. 1). For our intended application, namely
to interpret morphological changes of the brain, attractors
and repellors may be interpreted as areas of matter loss and
growth, respectively, saddle points may correspond to con-
figurations at barriers or membranes, and rotation centers
may indicate local tissue shearing.

2.1 Attractors and Repellors as Contraction
Transformation Fix Points

Given a complete metric space(Θ, d) with the distance
function d defined over the setΘ (cf. [7]). A mapping
f : Θ → Θ from the metric space into itself is called a
transformation. A transformation is calledcontractiveon
Θ if there is a constants ∈ [0, 1[ such that

d(f(x), f(y)) ≤ s · d(x, y) ∀ x, y ∈ Θ. (4)

Any such numbers is called acontractivity factorfor the
transformationf.

Theorem 1 Let f : Θ → Θ be a contractive transforma-
tion on a complete metric space(Θ, d). Then the transfor-
mation f possesses exactly one pointa ∈ Θ with f(a) =
a, and a is called fix point of transformationf . More-
over, for anyx ∈ Θ, the sequencex, f(x), . . . , fk(x) :=
f(fk−1(x)), . . . or short[

fk(x)
]
k=0,1,...

(5)

Figure 1. Classification criteria for critical
points (after Abraham et al. [1]). λi denote the
eigenvalues of the phase portrait to a critical
point.

converges to the fix pointa, i.e.

lim
k→∞

fk(x) = a. (6)

For a proof of this theorem see, e.g., [7]. Fix pointa is also
called theattracting pointof setΘ.

Consider now a vector field~u(~x) defined on the domain
Ω. Additionally we assume

~x + ~u(~x) ∈ Ω ∀ ~x ∈ Ω, (7)

which holds for vector fields obtained by non-rigid registra-
tion of images defined onΩ.

With the Euclidean distance

d(~x, ~y) := ‖~x− ~y‖2 ∀ ~x, ~y ∈ Ω, (8)

the pair(Ω, d) defines a metric space.
Using an Euclidean reference frame and taking assump-

tion (7) into account~u(~x) defines a transformationT : Ω →
Ω through

T (~x) := ~x + ~u(~x). (9)

For the limit of each Cauchy sequenceX = [~xk]k=0,1,...

lim
k→∞

~xk = ~x ∈ Ω, (10)

is in Ω, (Ω, d) is a complete metric space [7].
Consider now a fix point~a ∈ Ω. The set

Θ(~a) :=
{

~x|~x ∈ Ω ∧ lim
k→∞

T k(~x) = ~a

}
(11)

is called theattraction areaΘ of ~a. For a consideration of
the phase portraitA~a and especially its eigenvalues we will
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now take only fix points into account that have the following
property: It exists a positive numberδ > 0 with

‖~u(~x)‖ 6= 0 ∀ ~x ∈ Uδ(~a)\{~a} ∧ Uδ(~a) ⊆ Θ (12)

i.e. the attracting area of fix point~a consist of at least a
sphere with radiusδ around fix point~a, and the vector field
is not zero in this sphere.

For the estimation of the eigenvalues we consider a sub-
set ofΘ

Θ̃ := {~x|~x ∈ Θ ∧ ‖~x− ~a‖ < ε, ε ≥ δ} . (13)

Using (3) yields

A(~x− ~a) ≈ ‖~x− ~a‖2
~u(~x). (14)

Since~a → ~x + ~u(~x) for ~x → ~a and with substitutionλ =
‖~x− ~a‖2 we obtain

A~u(~x) ≈ −λ~u(~x). (15)

This accounts for all vectors~u(~x) ∈ Θ̃ and due to (12)
Θ̃ also contains a set of eigenvectors~ui ∈ Θ̃ of A~a. Thus
all its three eigenvalues are less then zeroλ1 ≤ λ2 ≤ λ3 <
0 and fix point~a is an attractor as can be seen from the
classification in figure 1.

By replacing transformation (9) with

Tinv(~x) := ~x− ~u(~x) (16)

the fix points of sequences
[
T k

inv(~x)
]
k=0,1,...

yield repellors.
The derivation is similar to the one given above.

3 Estimation algorithm

We will now describe the procedure to estimate attrac-
tors when using transformationT (9), repellors when using
Tinv (16) respectively. We introduce a regular gridΩ̂ by
discretizing the domainΩ based on the resolution of the
studied input images.

3.1 Cumulation

To find fix points~a in the deformation field~u we first
define a counterC on Ω̂. Defining a thresholdt, and

Ω̂start :=
{
~x| ‖~u(~x)‖ > t, t > 0, ~x ∈ Ω̂

}
(17)

yields a set of sequence start points, that ensures attraction
areasΘ(~a) ⊃ {~a}, i.e. the attraction area will contain more
then just the starting point. Now we consider sequences[
T k(~x)

]
k=0,1,...

. When reaching the breaking condition

~u(T k(~x)) < t we increment counterC(T k(~x)). After it-
eration over all~x ∈ Ω̂start the distribution of counter values
C(~x) reflects the distribution of fix points of vector field~u.

3.2 Clustering

Since we work on a finite domain̂Ω we will consider two
sequences

[
T k(~x1)

]
k=0,1,...

and
[
T l(~x2)

]
l=0,1,...

to con-
verge to the same fix point~a if for a certain valueα > 0,
α ∈ R if the following assumption is fulfilled:

~u(T k(~x1)) < t ∧ ~u(T l(~x2)) < t →∥∥T k(~x1)− T l(~x2)
∥∥ < α. (18)

Hereα should be chosen based on the resolution of the grid
Ω̂; a convenient value is half a pixel size.

Attracting points are finally obtained by clustering
counterC: First, find a seed point~s ∈ Ω̂ with C(~s) > t, and
create a point size cumulation areaΘ~s. Then, the cumula-
tion areaΘ~s is grown by adding neighboring grid points~x
as long asC(~x) > t. After the growth of areaΘ~s is fin-
ished, its center of gravity is calculated, weighting with the
counter valuesC(~x), ~x ∈ Θ~s and then used as critical point
location:

~xcp :=

∑
~x∈Θ~s

C(~x)~x∑
~x∈Θ~s

C(~x)
. (19)

Finally, for each~x ∈ Θ~s setC(~x) := 0.
Repeat this procedure untilC(~x) ≤ t ∀ ~x ∈ Ω̂.

3.3 Phase Portrait Estimation and Classification

Using the approximation of vector field~u(~x) in the envi-
ronment of a critical point~xcp (3), and substituting∆~x :=
~x− ~xcp yields

‖∆~x‖ ~u(~xcp + ∆~x) = A(∆~x). (20)

Considering a certain environment of~xcp and taking (20)
into account, we obtain an over-determined system of linear
equations [8] that can be solved using Householder trans-
formations [10]. SinceA is a3 × 3 matrix, calculating the
eigenvalues and thus a classification of critical point~xcp can
easily be done solving

det(A− λI) = 0 (21)

using Cardan’s formula [10].

4 Application

A patient suffering from Alzheimer Disease (AD) was
scanned twice in an 12 month interval. After rigid regis-
tration [13], both datasets were registered using the fluid
dynamic, non-rigid approach described by Christensen [2].
We obtained a displacement vector at each point of the ref-
erence image, corresponding to the shift of tissue during the
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time interval. From the displacement field we extracted crit-
ical points. To represent their properties, a color scheme is
implemented, where green and red indicate repelling or at-
tracting property, and blue a rotation component. With this
color-code a critical point could be easily visualized: a re-
pellor appears purely green, an attractor red, and a rotation
center blue. Different types of saddle points may be distin-
guished by mixing the respective colors.

Figure 2. Pattern of shape change of a pa-
tients’ brain between two examination time
points. The critical point (repellor) within the
frontal CSF compartment indicates a virtual
flow in fronto-occipital direction. The major
displacement lines (arrows) depict the defor-
mation lines.

The set of critical points is dominated by a strong re-
pellor located in the pre-frontal cerebro-spinal fluid (CSF)
compartment (Fig. 2). The bifrontal tissue loss induced by
the disease leads to an increase of the frontal CSF compart-
ment. Displacement stream lines (Figs. 2 map the "flow"
of tissue along the mid line structures (as a correlate of a
global atrophy) and reveal a retraction of the brain in the
frontal-occipital direction. As could be deduced by Fig. 2
the strongest deformations occur in the posterior portions of
the first and second frontal gyrus on both hemispheres.

5 Conclusion

We proposed to describe deformation fields obtained
from non-rigid registration of time series of MR images by

its critical points. A novel method for finding critical points
in discrete vector fields was introduced based on contraction
mapping.

However, our method fails to detect rotation centers or
balanced saddle points. Here, local measures based on the
Jacobian (Helman et al. [6]) or global approaches like re-
cently introduced by Polthier et al. [9] may promise better
results.
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